Halogens



Halogens 3368
Photo by: www.fzd.it

The halogens are the family of chemical elements that includes fluorine (atomic symbol F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). The halogens make up Group VIIA of the Periodic Table of the elements. Elemental halogens are diatomic molecules. However, due to their high reactivity, the halogens are never found in nature in native form. The family name means "salt-forming," from the Greek for salt, halos, and for generating genes. The salinity of the oceans on Earth is due in large part to such halogen salts (halides) as sodium chloride (NaCl) and potassium iodide (KI).

Halogens display physical and chemical properties typical of nonmetals. They have relatively low melting and boiling points that increase steadily down the group. Near room temperature, the halogens span all of the physical states: Fluorine and chlorine are gases, bromine is a liquid, and iodine is a solid. All of the elements are colored, with the color becoming more intense moving down the group. Fluorine gas is pale yellow, and chlorine gas is a yellowish green. Liquid bromine and its vapors are brownish red. Solid iodine appears as shiny, dark gray crystals, and the vapors are a deep purple. The halogens are poor thermal and electrical conductors in all phases, and as solids they are brittle and crumbly. The halogens have distinctive, unpleasant odors, will burn exposed flesh, and are toxic.

The neutral atoms of the halogens possess seven outer electrons. An additional electron can be added to halogen atoms to form singly charged negative ions. These ions have a closed outer-shell configuration. Electronegativity is a measure of the ability of an atom of one element to remove an electron from an atom of another element. As a group, the halogens are among the most electronegative elements. Fluorine has the highest electronegativity of all the elements. Halogens are so reactive that all the elements except helium and neon have been found to react with at least one of the halogens. Fluorine is always assigned a formal oxidation number of –1, whereas the other halogens can exhibit a range of oxidation numbers.

The ability of halogens to form chemical compounds with all metals and most nonmetals has led to a wide variety of uses for these elements. Chlorine is used as a bleach and a disinfectant. Iodine has been used as a topical microbicide. Iodine and bromine are added to halogen lamps to lengthen

Chlorine gas belongs to the halogen chemical family.
Chlorine gas belongs to the halogen chemical family.

the life of the filament and prevent darkening of the bulb. Chloride and iodide are essential dietary minerals for humans. Organic compounds containing halogens are used as fire-retardants (halons), as refrigerants (Freons), and in nonstick coatings (Teflon). Silver bromide and silver iodide have been used in photographic emulsions since the early days of photography. Many halogenated compounds are toxic. A well-known example is DDT (dichlorodiphenyltrichloroethane), once a widely applied pesticide that was banned in the United States after severe environmental effects were discovered. All known isotopes of astatine are radioactive, with the longest-lived isotope having a half-life of about eight hours. Relatively little is known of the physical and chemical properties of astatine. However, it is predicted to have properties similar to iodine.

SEE ALSO Bromine ; Chlorine ; Fluorine ; Iodine .

John Michael Nicovich

Bibliography

Lide, David R., ed. (2003). The CRC Handbook of Chemistry and Physics , 84th edition. Boca Raton, FL: CRC Press.

Internet Resources

Winter, Mark. "WebElements™ Periodic Table." The University of Sheffield and WebElements, Ltd., U.K.. Available from http://www.webelements.com .



Also read article about Halogens from Wikipedia

User Contributions:

1
Beconfident
Its a complete document to learn the general prop.of halogens..but headings can make it perfect one..thanks
2
Koustuv Moni Bora
I have a question. Why halogens possess highest elecetronegativity? I have known that it is due to small size and large nuclear charge. If there is any other reason, please inform me?
The halogens are the family of chemical elements that includes fluorine (atomic symbol F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). The halogens make up Group VIIA of the Periodic Table of the elements. Elemental halogens are diatomic molecules. However, due to their high reactivity, the halogens are never found in nature in native form. The family name means "salt-forming," from the Greek for salt, halos, and for generating genes. The salinity of the oceans on Earth is due in large part to such halogen salts (halides) as sodium chloride (NaCl) and potassium iodide (KI).They are the element in group 7
Halogens are nonmetals in group 17 (or VII) of the periodic table. Down the group, atom size increases. As a diatomic molecule, fluorine has the weakest bond due to repulsion between electrons of the small atoms.
Due to increased strength of Van der Waals forces down the group, the boiling points of halogens increase. Therefore, the physical state of the elements down the group changes from gaseous fluorine to solid iodine.
Due to their high effective nuclear charge, halogens are highly electronegative. Therefore, they are highly reactive and can gain an electron through reaction with other elements. Halogens can be harmful or lethal to biological organisms in sufficient quantities.
Terms
halogensGroup 17 (or VII) in the periodic table consisting of fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). They share similar chemical properties.
electronegativityThe tendency of an atom to attract electrons to itself.
The halogens are a series of non-metal elements from group 17 of the periodic table (formerly VII). The halogens include fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). The artificially created element 117 (ununseptium) may also be considered a halogen.

Physical Properties
Atoms get bigger down the group as additional electron shells are filled. When fluorine exists as a diatomic molecule, the F–F bond is unexpectedly weak. This is because fluorine atoms are the smallest of the halogens—the atoms are bonded close together, which leads to repulsion between free electrons in the two fluorine atoms.

The boiling points of halogens increase down the group due to the increasing strength of Van der Waals forces as the size and relative atomic mass of the atoms increase. This change manifests itself in a change in the phase of the elements from gas (F2, Cl2) to liquid (Br2), to solid (I2). The halogens are the only periodic table group containing elements in all three familiar states of matter (solid, liquid, and gas) at standard temperature and pressure.

Comment about this article, ask questions, or add new information about this topic: